
March 2016, Volume 3, Issue 3 JETIR (ISSN-2349-5162)

JETIR1603013 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 58

Multi-Pattern Matching Using GPU

Gayatri Darade
1
, Hitesh Kajale

2
, Rajesh Shirsath

3
, Sumit Rajguru

4

Department of computer Engineering

Mathoshri college of Engineering and Research centre, Eklahare, Nashik.

Abstract— Graphics processing units (GPUs) have attracted a

lot of attention due to their cost-effective and enormous power

for massive data parallel computing. In this paper, we propose

a novel parallel algorithm for exact pattern matching on

GPUs. A traditional exact pattern matching algorithm matches

multiple patterns simultaneously by traversing a special state

machine called an Aho-Corasick machine. Considering the

particular parallel architecture of GPUs, in this paper, we first

propose an efficient state machine on which we perform very

efficient parallel algorithms. Also, several techniques are

introduced to do optimization on GPUs, including reducing

global memory transactions of input buffer, reducing latency

of transition table lookup, eliminating output table accesses,

avoiding bank-conflict of shared memory, coalescing writes to

global memory, and enhancing data transmission via

peripheral component interconnect express. We evaluate the

performance of the proposed algorithm using attack patterns

from Snort V2.8 and input streams from DEFCON. The

experimental results show that the proposed algorithm

performed on NVIDIA GPUs achieves up to 143.16-Gbps

throughput, 14.74 times faster than the Aho-Corasick

algorithm implemented on a 3.06-GHz quad-core CPU with

the OpenMP. The library of the proposed algorithm is

publically accessible through Google Code.

Keywords— CUDA, GPU, Pattern Matching, Parallel Algorithm

I. INTRODUCTION

Antivirus programs can detect viruses essentially in two

ways: by looking up virus signatures in the executable code,

or by profiling the run time behavior, usually through

emulation. Virus signatures are data patterns which uniquely

describe the identity of a virus or of a family of viruses. The

problem of identifying a signature inside binary code is a

classic problem of pattern matching.

Although multiple pattern matches algorithms have been

proposed, such as the Aho-

Corasick, and Commentz-Walter variants, real-

time implementations still pose a challenge to reducing the

scanning time of an executable.

Parallel approaches to both single and multiple

pattern matching have been researched, however given the

low number of cores available on most CPUs usually, the

speed increase obtained is still causing significant

bottlenecks in real-time implementations. Recent progress

in the field of GPU technology, along with NVidia’s CUDA

architecture have made possible the ability to build hybrid,

CPU/GPU-based solutions, that could benefit from the high

degree of parallelism offered by the GPU hardware.

II. LITRATURE SURVEY

 The pattern matching challenge has a long history

in the computing era, dating back to the early stages in

computing. The single pattern matching problem aims to

find all occurrences of a given, non-empty keyword, into an

input string, while later applications have extended the

problem to find multiple occurrences of a finite, non-empty

set of keywords into an input string.

Pattern matching algorithm can be classified in two types:

Single pattern Matching and Multi pattern matching

algorithms.

a) Single-Pattern Matching Algorithms

1. The Brute-Force Algorithm

The brute force algorithm is the simplest (and the slowest)

of existing variants of multiple pattern matching. The brute-

force pattern matching algorithm compares the pattern P

with the text T for each possible shift of P relative to T, until

either a match is found, or all placements of the pattern have

been tried.

2. The Karp-Rabin Algorithm

Michael O. Rabin and Richard M. Karp came up with the

idea of hashing the pattern and to check it against a hashed

sub-string from the text in 1987. In general the idea seems

quite simple, the only thing is that we need a hash function

that gives different hashes for different sub-strings. Such

hash function, for instance, may use the ASCII codes for

every character. The hash function may vary depending on

many things, so it may consist of ASCII char to number

converting, but it can be also anything else. The only thing

we need is to convert a string (pattern) into some hash that

is faster to compare. Let’s say we have the string "hello

world", and let’s assume that its hash is hash(’hello world’)

= 12345. So if hash(’he’) = 1 we can say that the pattern

"he" is contained in the text "hello world". Thus on every

step we take from the text a sub-string with the length of m,

where m is the pattern length. Thus we hash this sub-string

and we can directly compare it to the hashed pattern. The

Rabin-Karp algorithm has the complexity of O(nm) where

n, of course, is the length of the text, while m is the length

of the pattern.

3. The Boyer-Moore Algorithm

Boyer-Moore is an algorithm that improves the performance

of pattern searching into a text by considering some

observations. It is defined in 1977 by Robert S. Boyer and J

Strother Moore and it consist of some specific features. The

main idea of Boyer-Moore in order to improve the

performance are some observations of the pattern. In the

terminology of this algorithm they are called good suffix

and bad-character shifts.

b) Multi pattern Matching algorithms.

Multi pattern matching algorithm can generally be classified

into the following approach.

1. Prefix algorithms

The prefix searching algorithms use a tree to store the

patterns, a data structure where each node represents a

prefix u of one of the patterns. For a given position i of the

input string, the algorithms traverse the tree looking for the

longest possible suffix u of t0:::ti that is a prefix of one of

the patterns. One of the most well known prefix multiple

pattern matching algorithms is Aho-Corasick.

March 2016, Volume 3, Issue 3 JETIR (ISSN-2349-5162)

JETIR1603001 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 59

2. Suffix algorithms

The suffix algorithms store the patterns backwards in a

suffix tree, a rooted directed tree that represents the suffixes

of all patterns. At each position i of the input string the

algorithms compute the longest suffix u of the input string

that is a suffix of one of the patterns. Commentz-Walter

combines a suffix tree with the good suffix and bad

character shift functions of the Boyer-Moore algorithm. A

simpler variant of Commentz-Walter is Set Horspool, an

extension of the Horspool algorithm that uses only the bad

character shift function. Suffix searching is generally

considered to be more efficient than prefix searching since

on average more input string positions are skipped

following each mismatch.

3. Factor algorithms

The factor searching algorithms build a factor oracle, a tree

with additional transitions that can recognize any substring

(or factor) of the patterns. Dawg-Match and Multi BDM [6]

were the first two factor algorithms. The Set Backward

Oracle Matching and the Set Backward Dawg Matching

algorithms are natural extensions of the Back-ward Oracle

Matching and the Backward Dawg Matching [4] algorithms

respectively for multiple pattern matching.

4.Hashing algorithms

The algorithms following this approach use hashing to

reduce their memory footprint, usually in conjunction with

other techniques. Wu-Manber is based on the Horspool

algorithm. It reads the input string in blocks to effectively

increase the size of the alphabet and then applies a hashing

technique to reduce the necessary memory space.

5.The Wu-Manber Algorithm
Wu-Manber is a generalization of the Horspool algorithm

for multiple pattern matching. It scans the characters of the

input string backwards for the occurrences of the patterns,

shifting the search. Window to the right when a mismatch or

a complete match occurs. To perform the shift, the bad

character shift function of the Horspool algorithm is used.

During the pre processing phase, three tables are built from

the patterns, the SHIFT, HASH and PREFIX tables. SHIFT

is the equivalent of the bad character shift of the Horspool

algorithm for blocks of characters, generalized for multiple

patterns.

Algorithm-
Wu-Manber(P={p 1; p 2 pr },T={t 1; t2tn })

1: Preprocessing

2: Computation of B

3: Construction of hsh table SHIFT and HASH

4: Searching

5: pos = l min

6: While pos n Do

7: I = h1(t pos B+ 1t pos)

8: If SHIFT[i]=0 Then

9: list=HASH[h 2(t pos B+ 1t pos)]

10: Verify all pattern in the list one by one against all the

text

11: pos=pos+1;

12: Else pos=pos + SHIFT[i]

13: End of If

14: End of While

6. The Aho-Corasick Algorithm

One of the most widespread algorithms used nowadays to

solve the multiple pattern matching problem is that

proposed by Aho and Corasick in .The Aho-Corasick

algorithm was proposed in 1975 by Alfred V. Aho and

Margaret J.Corasick[1] ,an remain to this day this is most

effective multi pattern matching algorithm. Aho-Corasick

(AC) is a Multi-string matching algorithm, meaning it

matches the input against multiple strings at the same time.

Multi-string matching algorithms generally pre-process the

set of strings, and then search all of them together over the

input text. The algorithm works in two step first is building

a tree from set of pattern and second is searching text for

keywords in previously build tree. Here tree also called

State machine. Searching for a keyword is very efficient,

because it only moves through the states in the state ma-

chine. If a character is matching, it follows goto() function

otherwise it follows fail()function[1].In the Aho-Corasick

automaton the actions are determined by three functions:

1. The goto function g(q,a) is the next state from the current

state q, on receiving symbol ’a’.

2. The failure function f(q). for q* 0, is the next state in case

of a mismatch.

3. The output function out(q) gives the set of patterns found

at state q.

Algorithm1: Pattern matching machine

Input: A text string x = a 1a 2::: a n where each a is an input

symbol and a pattern matching machine M with goto

function g, failure function f, and output function output, as

described above.

Output : Locations at which keywords occur in x.

Method

1: begin

2: state 0

3: for i 1 until n do

4: begin

5: while g (state,a i) = fail do state f(state)

6: state g (state, ai)

7: if output (state)6= empty then

8: begin

9: print i

10: print output (state)

11: end

12: end

13: end

Algorithm 2 : Construction of the goto function

Input: Set of keywords K = {yl ; y2; ::::: yk }.

Output: Goto function g and a partially computed output

function

output.

Method

We assume output(s) is empty when state s is first created,

and g(s, a) = fail if a is undefined or if g(s, a) has not yet

been defined. The procedure enter(y) inserts into the goto

graph a path that spells out y.

1: begin

2: new state 0

3: for i 1 until k do enter(yi)

4: for all a such that g(0, a) = fail do g(0, a) 0

5: end

March 2016, Volume 3, Issue 3 JETIR (ISSN-2349-5162)

JETIR1603001 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 60

6: procedure enter(a 1; a2am):

7: begin

8: state 0; j 1

9: while g (state, a j)6= fail do

10: begin

11: state g (state, a j)

12: j j + l

13: end

14: for p j until m do

15: begin

16: new state + 1

17: g (state, a p)new state

18: state new state

19: end

20: output(state) { a 1a 2a m }

21: end

Algorithm 3: Construction of the failure function.

Input: Goto function g and output function output from

Algorithm 2

Output: Failure function f and output function.

Method

1: begin

2: queue empty

3: for each a such that g(0, a) = s6=0 do

4: begin

5: queue queue [s

6: f(s) 0

7: end

8: while queue 6= empty do

9: begin

10: let r be the next state in queue

11: queue queue - {r}

12: for each asuch that g(r, a) = s6=fail do

13: begin

14: queue queue [{s}

15: state f(r)

16: while g (state, a) = fail do state f(state)

17: f(s) g(state, a)

18 output(s) output(s)[output(f(s))

19: end

20: end

21: end

III. PROPOSED SYSTEM

There are various measures on which performance of

pattern matching system is depends, such as size of

patterns, length of patterns, size of packet data, length of

packet data ,size of constructed DFA. Performance

analysis of the visual cryptography schemes are likely to

be examined on the basis of Time required to search

pattern in given data, Time required to copy data from

CPU to GPU, Time required to construct DFA, position

of found pattern in packet data. All this factor are

important in pattern matching system. Since an

improvement to any of these factors can result in a more

effective Pattern matching system.

Fig. 1.System Architecture

Fig. 2. Pattern Detection Module

IV. Result

The result of the Multi-Pattern Matching using GPU

is as follows:

1. We came to the conclusion that the system with

serial/ single pattern matching system which

works on the CPU requires large amount of

time for the pattern matching and detecting the

virus signature.

2. Another system we studied in our project is

Multi-Pattern matching using CPU with

OpenMP. Which works on multiple cores of the

system and is comparatively much more time

saving than the previous system?

3. We studied and developed third system which

is our main project concept i.e. Multi-Pattern

Matching using GPU. The result of the system

is really impressive in terms of the time

required for the total operation. It takes a

negligible time to perform tasks such as

building DFA, matching patterns, identifying

virus signatures etc.

REFERENCES

[1] A.V. Aho and M.J. Corasick. Efficient String Matching: An

Aid to Bibliographic Search. Communications of the ACM,

18(6):333-340, 1975.

[2] X. Chen, B. Fang, L. Li, and Y. Jiang. WM+: An Optimal

Multi-pattern String Matching Algorithm Based on the WM

Algorithm. Advanced Parallel Processing Technologies,

pages 515-523, 2005.

March 2016, Volume 3, Issue 3 JETIR (ISSN-2349-5162)

JETIR1603001 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 61

[3] GNU Grep. Webpage containing information about the gnu

grep search utility. Website, 2012.

http://www.gnu.org/software/grep/.

[4] G. Navarro and M. Raffinot. Flexible Pattern Matching in

Strings: Practical On-line Search Algorithms for Texts and

Biological Sequences. Cambridge University Press, 2002.

[5] M. Crochemore, A. Czumaj, L. Gasieniec, T. Lecroq, W.

Plandowski, and W. Ryt-ter. Fast Practical Multi-pattern

Matching. Information Processing Letters, 71(3-4):107 -

113, 1999.

[6] M. Crochemore and W. Rytter. Text Algorithms. Oxford

University Press, Inc.,1994.

[7] Z. Zhou, Y. Xue, J. Liu, W. Zhang, and J. Li. MDH: A High

Speed Multi-phase Dynamic Hash String Matching

Algorithm for Large-Scale Pattern Set. Information and

Communications Security, 4861:201-215, 2007.

[8] Snort. Webpage containing information on the snort

intrusion prevention and detection system. Website, 2010.

http://www.snort.org/

[9] S. Dori and G.M. Landau. Construction of Aho Corasick

Automaton in Linear Time for Integer Alphabets.

Information Processing Letters, 98(2):66-72, 2006.

[10] N Wilt. The CUDA Handbook: A Comprehensive Guide to

GPU Programming. Addison-Wesley Professional, 2013

CUDA Zone. Official webpage of the nvidia cuda api.

Website, http://www.nvidia.com/object/cudahome.html

[11] A. Tumeo, S. Secchi, and O. Villa, “Experiences with String

Matching on the Fermi Architecture,” Proc. 24th Int’l Conf.

Architecture of Computing Systems, 2011.

[12] G. Vasiliadis, M. Polychronakis, S. Antonatos, E.P.

Markatos, and S. Ioannidis, “Regular Expression Matching

on Graphics Hardware for Intrusion Detection,” Proc. 12th

Int’l Symp. Recent Advances in Intrusion Detection, 2009.

[13] N. Cascarano, P. Rolando, F. Risso, and R. Sisto, “iNFAnt:

NFA Pattern Matching on GPGPU Devices,” SIGCOMM

Computer Comm. Rev., vol. 40, pp. 20-26, 2010.

[14] GCC, http://gcc.gnu.org/, 2013.

[15] OpenMP, http://openmp.org/wp/, 2013.

